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Recap

e Two events are disjoint/mutually exclusive if they do not have any overlapping
outcomes

e Addition rule: Pr(A u B) =

e Complement rule: Pr(A°) =



Probabilities with contingency tables

e Aswe saw in the previous class, sometimes the probabilities of events are quite
clear to calculate (e.g. dice rolls or drawing cards)

e But oftentimes we have to use data to try and estimate probabilities
m Use proportions from randomly sampled data as a proxy

e When we have two (or more) variables in our data, we often want to understand
the relationships between them



Practice

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788283/

Did notdie Died Total
Does not drink coffee 5438 1039 6477
Drinks coffee occasionally 29712 4440 34152
Drinks coffee regularly 24934 3601 28535
Total 60084 9080 69164

Define events A = died and B = non-coffee drinker. Calculate/set-up the
calculations for the following for a randomly selected person in the cohort:

e P(A)
e P(A N B)
e P(A U B)


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788283/

Three types of probability



Marginal and joint probabilities

1. P(A) is an example of a marginal probability, which is a probability involving a
single event

e From the contingency table, we use row totals or column totals and the overall
total to obtain marginal probabilities

2. P(A N B) is an example of a joint probability, which is a probability involving two
or more events that have yet to occur

e From the contingency table, we use specific cells and the overall total to
obtain joint probabilities



Marginal from joint

We can obtain the marginal probabilities from joint probabilities:

Did notdie Died Total

Does not drink coffee 5438 1039 6477

Drinks coffee occasionally 29712 4440 34152
Drinks coffee regularly 24934 3601 28535
Total 60084 9080 69164

P(B) = P(no coffee)
= P(no coffee N did not die) + P(no coffee M died)
=P(BNA)+PBNA"
5438 1039

69164 69164
— 0.0936




Conditional probability

3. Conditional probability: a probability that an event will occur given that another
event has already occurred

e E.g. Given that it rained yesterday, what is the probability that it will rain
today?

e |tis called “conditional” because we calculate a probability under a specific
condition

e Pr(A|B): probability of A given B
= Not to be confused with the coding | which is “or”

= Appears to involve two events, but we assume that the event that is
conditioned on (in this case B) has already happened

e We can easily obtain conditional probabilities from contingency tables!



Conditional probability with contingency tables

Did notdie Died Total

Does not drink coffee 5438 1039 6477

Drinks coffee occasionally 29712 4440 34152
Drinks coffee regularly 24934 3601 28535
Total 60084 9080 69164

e From contingency table, we use specific cells and row or column totals to obtain
conditional probabilities

Recall events A = died and B = non-coffee drinker. Write P() notation for the
conditional probability of dying given that someone does not drink coffee, and
then obtain this probability.



General multiplication rule

Conditional, joint, and marginal probabilities are related via the general
multiplication rule:

P(A N B) =

o Let’s see this in the coffee example!

e Very useful for finding probability that two events will happen in sequence.

= Example: A box has three tickets, colored red, orange, yellow. We will draw two
tickets randomly one-at-a-time without replacement. What is the probability
of drawing the red ticket first and then the orange ticket?



Independence and conditional probabilities

e Recall, events A and B are independent when what is true about their joint
probability?

e Using the general multiplication rule, what is another way to determine if events
A and B are independent?

= Why does this make sense “intuitively”?

e Using this new test of independence, are dying and abstaining from coffee
independent events?



Conditional probability formula

We can re-arrange the general multiplication formula to obtain the following
general formula for conditional probability. For any events A and B:

P(A N B)
P(B)

P(A|B) =

e Come up with a similar formula for P(B|A)

e Note: complement rule holds for conditional probabilities if we condition on the
same information: P(A|B) = 1 — P(A°|B)



Law of Total Probability

Let A be an event, thenlet {B,B», ... ,Bk} be aset of mutually exclusive events
whose union comprises their entire sample space S

Then Law of Total Probability (LoTP) says:

Pr(A) = Pr(A N B;) + Pr(A N By) + ... + Pr(A N By)

Blob picture

We already did this in the coffee example! We said
P(no coffee) = P(no coffee M did not die) + P(no coffee N died)

= Here, the outcomes of “did not die” and “died” are the mutually exclusive
events that comprise S



Tree diagram

Tool to organize outcomes and probabilities around the structure of the data. Useful

when outcomes occur sequentially, and outcomes are conditioned on predecessors.
Let’s do an example:

o Aclass has a midterm and a final exam. 80% of students passed the midterm. Of
those students who passed the midterm, 90% also passed the final. Of those
student who did not pass the midterm, 15% passed on the final. You randomly

pick up a final exam and notice the student passed. What is the probability that
they passed the midterm?

e Using P() notation, what probability are we interested in? What probabilities
do we need to calculate along the way?

e Let’s construct our tree!

e Inthetree diagram, where are the three types of probabilities appearing?



Bayes’ Rule



Bayes’ Rule

e As we saw before, the two conditional probabilities P(A|B) and P(B|A) are not
the same. But are they related in some way?

e Bayes’ rule:

P(B|A)P(A)
P(B)

P(A|B) =

e Why is this seemingly more complicated formula useful?



Bayes’ Theorem (more general)

e Suppose we have a random process and have a defined event A

e Further suppose we can break up the sample space into k disjoint/mutually
exclusive outcomes orevents B;,B», ... ,Bx

e Without loss of generality, suppose we want P(B|A)
e Bayes’ Theorem states:

P(A|B1)P(B)
P(A)

P(B1|A) = (Bayes' Rule)

_ P(A|B1)P(B1)
“PANB,) +PANB>) +...+PAN By (LoTP)
P(A|B1)P(B1)

P(A|B1)P(B1) + P(A|B>)P(B>) + ... + P(A|Bx)P(Bk)

e Let’s see how the tree diagram compares to the formula!






Example

e In Canada, about 0.35% of women over 40 will develop breast cancer in any given
year. Acommon screening test for cancer is the mammogram, but this test is not
perfect.

e In about 11% of patients with breast cancer, the test gives a false negative: it
indicates a woman does not have breast cancer when she does have breast
cancer.

e In about 7% of patients who do not have breast cancer, the test gives a false
positive: it indicates these patients have breast cancer when they actually do not.

e If we tested a random Canadian woman over 40 for breast cancer using a
mammogram and the test came back positive, what is the probability that the
patient actually has breast cancer?



