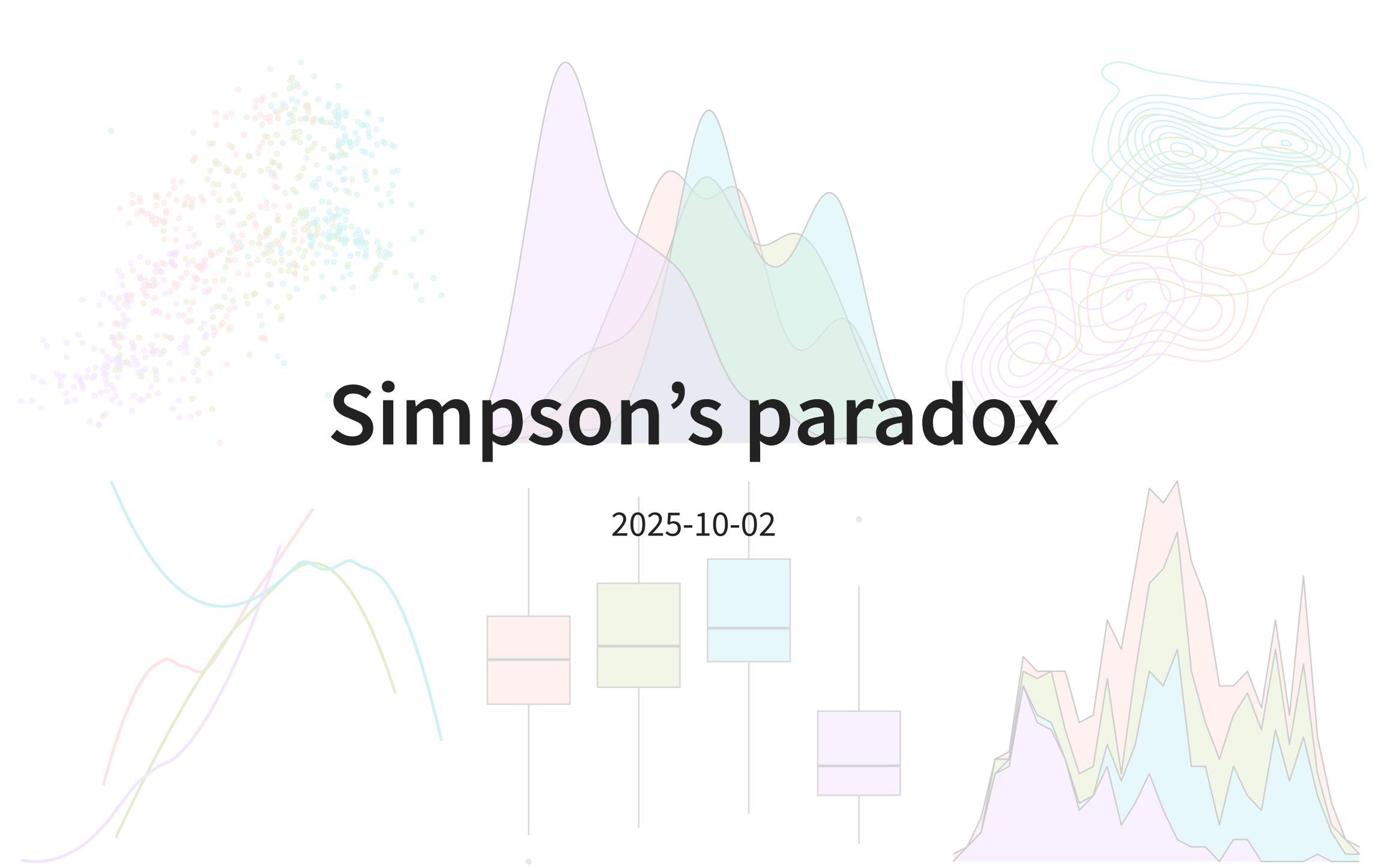


# Simpson's paradox



# Study design recap

- What are the differences between observational studies and experimental studies?
- What is a confounding variable?

# UC Berkeley admissions

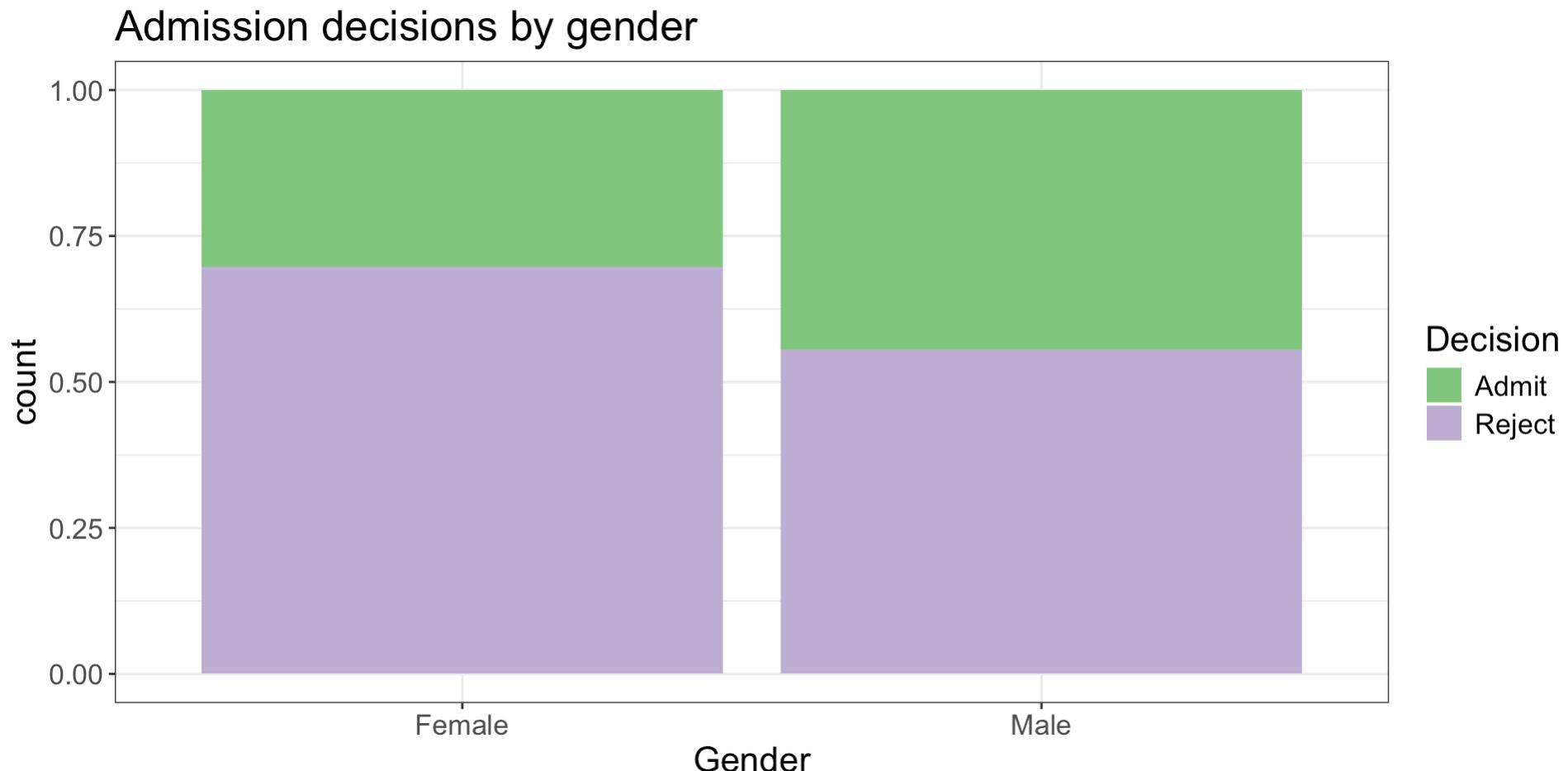
Observational study on sex bias based on Fall 1973 admissions data to the graduate program at the University of California, Berkeley

|       | Admit | Deny | Total |
|-------|-------|------|-------|
| Men   | 3738  | 4704 | 8442  |
| Women | 1494  | 2827 | 4321  |
| Total | 5232  | 7531 | 12763 |

1. What is the probability\* of admission for a randomly selected applicant?
2. What is the probability of admission among men? Among women?
3. Are the probabilities you found marginal, joint, or conditional probabilities?

Suppose we want to understand the relationship between gender and admission decision. What sort of visualization might be appropriate for representing this data?

# UC Berkeley admissions (cont.)



# Case study

An application of probability!

# Dive into data

We have more nuanced data about the graduate admissions: we know the department that each person was applied to.

We will consider the six largest departments: A, B, C, D, E, F

- The first six observations in the data frame are as follows:

```
1 # head() gives us the first 6 rows
2 head(admissions)
```

```
# A tibble: 6 × 3
  Decision Gender Dept
  <chr>    <chr>  <chr>
1 Admit     Male    B
2 Reject    Female  C
3 Admit     Male    C
4 Reject    Female  C
5 Admit     Male    A
6 Reject    Male    F
```

- What sort of EDA would be interesting/appropriate for these data?

# Frequency tables

Number of applicants by department:

Female applicants:

```
1 admissions |>
2 filter(Gender == "Female")
3 count(Dept)
```

| Dept | n   |
|------|-----|
| A    | 108 |
| B    | 25  |
| C    | 593 |
| D    | 375 |
| E    | 393 |
| F    | 341 |

Male applicants:

```
1 admissions |>
2 filter(Gender == "Male")
3 count(Dept)
```

| Dept | n   |
|------|-----|
| A    | 825 |
| B    | 560 |
| C    | 325 |
| D    | 417 |
| E    | 191 |
| F    | 373 |

Both groups:

```
1 admissions |>
2 count(Dept, Gender)
```

| Dept | Gender | n   |
|------|--------|-----|
| A    | Female | 108 |
| A    | Male   | 825 |
| B    | Female | 25  |
| B    | Male   | 560 |
| C    | Female | 593 |
| C    | Male   | 325 |
| D    | Female | 375 |
| D    | Male   | 417 |
| E    | Female | 393 |
| E    | Male   | 191 |
| F    | Female | 341 |
| F    | Male   | 373 |

# More-detailed frequency tables

Number of applicants by department and admission status:

Female applicants:

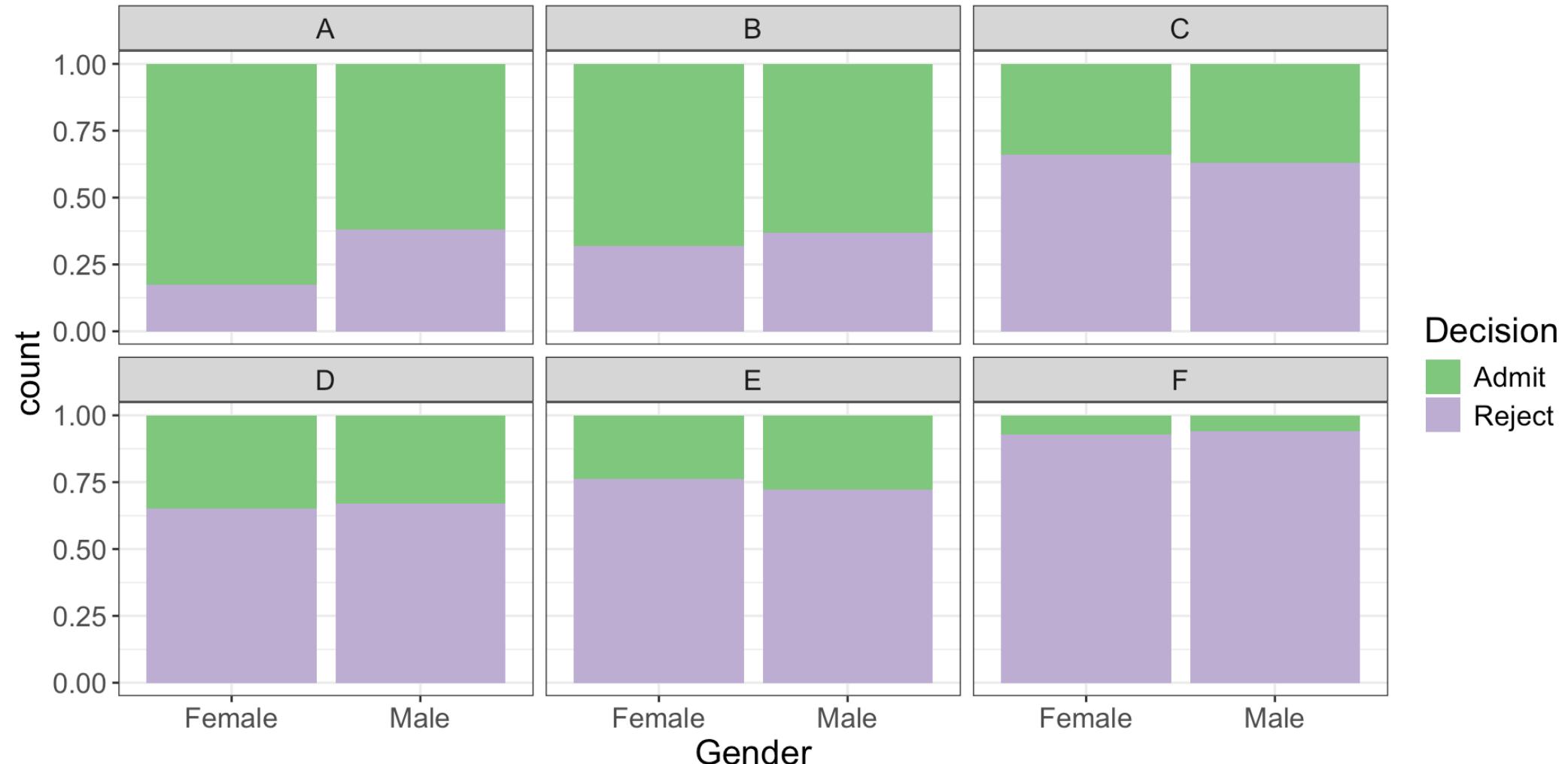
| Dept | Decision | n   |
|------|----------|-----|
| A    | Admit    | 89  |
| A    | Reject   | 19  |
| B    | Admit    | 17  |
| B    | Reject   | 8   |
| C    | Admit    | 202 |
| C    | Reject   | 391 |
| D    | Admit    | 131 |
| D    | Reject   | 244 |
| E    | Admit    | 94  |
| E    | Reject   | 299 |
| F    | Admit    | 24  |
| F    | Reject   | 317 |

Male applicants:

| Dept | Decision | n   |
|------|----------|-----|
| A    | Admit    | 512 |
| A    | Reject   | 313 |
| B    | Admit    | 353 |
| B    | Reject   | 207 |
| C    | Admit    | 120 |
| C    | Reject   | 205 |
| D    | Admit    | 138 |
| D    | Reject   | 279 |
| E    | Admit    | 53  |
| E    | Reject   | 138 |
| F    | Admit    | 22  |
| F    | Reject   | 351 |

# Visualize

Can visualize three categorical variables at once!



# Closer look

Probability of admission conditioning on gender and department:

| Dept | Gender | cond_prob_admit |
|------|--------|-----------------|
| A    | Female | 0.82            |
| A    | Male   | 0.62            |
| B    | Female | 0.68            |
| B    | Male   | 0.63            |
| C    | Female | 0.34            |
| C    | Male   | 0.37            |
| D    | Female | 0.35            |
| D    | Male   | 0.33            |
| E    | Female | 0.24            |
| E    | Male   | 0.28            |
| F    | Female | 0.07            |
| F    | Male   | 0.06            |

- Are all departments uniform in admission rates?
- Do admissions still seem biased against female applicants?

# What's going on?

- But wait... didn't we start by noting that men were way more likely to be admitted than women?
- The first two departments (A and B) are easy to get into
- The following table shows for each gender, the proportion of applicants each department received.

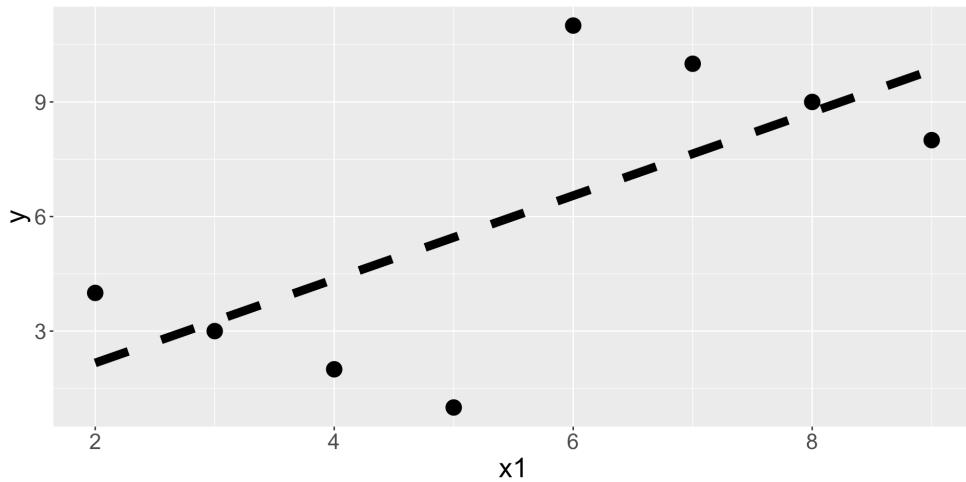
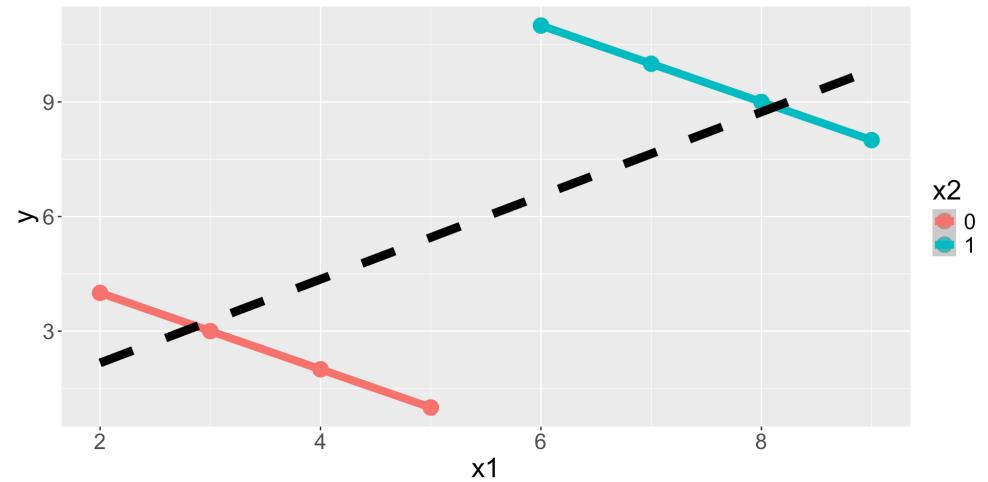
| Gender | Dept | cond_prop |
|--------|------|-----------|
| Female | A    | 0.059     |
| Female | B    | 0.014     |
| Female | C    | 0.323     |
| Female | D    | 0.204     |
| Female | E    | 0.214     |
| Female | F    | 0.186     |
| Male   | A    | 0.307     |
| Male   | B    | 0.208     |
| Male   | C    | 0.121     |
| Male   | D    | 0.155     |
| Male   | E    | 0.071     |
| Male   | F    | 0.139     |

What do you notice?

# Simpson's paradox

The UC Berkeley admissions observational study is an example of **Simpson's paradox**: when omitting one explanatory variable causes the measure/degree of association between another explanatory variable and a response variable to reverse or disappear

- In other words, the inclusion/exclusion of a third variable in the analysis can change the apparent relationship between the other two variables



- What was the confounding variable in UC Berkeley study?

# Live code

- Using wrangling to obtain probabilities
- `case_when()` to create more complex categorical variables

# Wrangling for probabilities

What is the probability that someone was admitted?

```
1 admissions |>
2   count(Decision) |>
3   mutate(prob = n/sum(n)) |>
4   select(-n)
```

```
# A tibble: 2 × 2
  Decision   prob
  <chr>     <dbl>
1 Admit     0.388
2 Reject    0.612
```

What is the probability that someone was admitted, conditioned on gender?

```
1 admissions |>
2   count(Gender, Decision) |>
3   group_by(Gender) |>
4   mutate(cond_prob = n/sum(n)) |>
5   select(-n)
```

```
# A tibble: 4 × 3
# Groups:   Gender [2]
  Gender Decision cond_prob
  <chr>  <chr>     <dbl>
1 Female Admit    0.304
2 Female Reject   0.696
3 Male   Admit    0.445
4 Male   Reject   0.555
```

- How might I extend to also condition on Department?

# More complex categorical variables

Suppose I want to create a new variable called `Dept2` that takes the values:

- “Group 1” if someone applied to Department A or B
- “Group 2” if someone applied to Department C or D
- “Group 3” if someone applied to Department E or F

```
1 # option 1 (awful): nested if_else()
2 admissions |>
3   mutate(Dept2 = if_else(Dept %in% c("A", "B"), "Group 1",
4                         if_else(Dept %in% c("C", "D"), "Group 2",
5                               "Group 3")))
# A tibble: 5 × 4
  Decision Gender Dept  Dept2
  <chr>    <chr> <chr> <chr>
1 Reject    Female  C    Group 2
2 Admit     Male    A    Group 1
3 Reject    Female  E    Group 3
4 Reject    Male    B    Group 1
5 Reject    Female  C    Group 2
```

# case\_when()

We will use the `case_when()` function which generalizes `if_else()`. We use the following notation: `<logical condition> ~ <value of variable>`. Different “ifs” are separated by commas, and the logical conditions are checked sequentially.

```
1 admissions |>
2   mutate(Dept2 = case_when(
3     Dept %in% c("A", "B") ~ "Group 1",
4     Dept %in% c("C", "D") ~ "Group 2",
5     Dept %in% c("E", "F") ~ "Group 3",
6   ))
```

# A tibble: 5 × 4

|   | Decision | Gender | Dept  | Dept2   |
|---|----------|--------|-------|---------|
|   | <chr>    | <chr>  | <chr> | <chr>   |
| 1 | Reject   | Female | C     | Group 2 |
| 2 | Admit    | Male   | A     | Group 1 |
| 3 | Reject   | Female | E     | Group 3 |
| 4 | Reject   | Male   | B     | Group 1 |
| 5 | Reject   | Female | C     | Group 2 |

```
1 # The following is also acceptable, but
2 # relies on sequential ordering:
3 admissions |>
4   mutate(Dept2 = case_when(
5     Dept %in% c("A", "B") ~ "Group 1",
6     Dept %in% c("C", "D") ~ "Group 2",
7     T ~ "Group 3",
8   )) |>
9   sample_frac()
```

# A tibble: 5 × 4

|   | Decision | Gender | Dept  | Dept2   |
|---|----------|--------|-------|---------|
|   | <chr>    | <chr>  | <chr> | <chr>   |
| 1 | Reject   | Female | C     | Group 2 |
| 2 | Admit    | Male   | A     | Group 1 |
| 3 | Reject   | Female | E     | Group 3 |
| 4 | Reject   | Male   | B     | Group 1 |
| 5 | Reject   | Female | C     | Group 2 |

# Prettier tables using `kable()`

- When we finish wrangling, the output is always a data frame
  - While this is so useful for coding, it's not the most beautiful when rendering!
  - How can we make turn the data frame into a beautiful table?
- We will need to first install the `kableExtra` library.

Currently:

```
1 admissions |>
2   count(Decision) |>
3   mutate(prob = n/sum(n))

# A tibble: 2 × 3
  Decision     n   prob
  <chr>     <int> <dbl>
1 Admit      1755  0.388
2 Reject     2771  0.612
```

- Using `kable()` (note we can specify number of digits)

```
1 library(kableExtra)
2 admissions |>
3   count(Decision) |>
4   mutate(prob = n/sum(n)) |>
5   kable(digits = 3)
```

| Decision | n    | prob  |
|----------|------|-------|
| Admit    | 1755 | 0.388 |
| Reject   | 2771 | 0.612 |