Bootstrap Confidence Intervals

2025-10-15



Housekeeping

e Coding practice due tonight

e Midterms returned tomorrow!



Bootstrap recap

e Sampling distribution describes how statistic behaves under repeated sampling
from population

e Typically cannot repeatedly sample from population, so we obtain bootstrap
distribution as approximation of the sampling distribution of the statistic!

1. Assume we have a sample X1, X2, ... , X, from the population. Call this sample
x. Note the samplesizeisn

2. Choose alarge numberB.Forbin1,2,...,B:

I. Resample: take a sample of size n with replacement from x. Call this set of
resampled data x;

ii. Calculate: calculate and record the statistic of interest from x;

At the end of this procedure, we will have a distribution of resample or bootstrap
statistics



Bootstrap distribution from activity

In our original sample of n = 10, we had pops = 0.7.



We have the following bootstrap We can compare to the true sampling

distribution of sample proportions, distribution (because it’s easy for me to
obtained from B = 5000 iterations: re-sample from the population here):
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e Notice that our bootstrap distribution isn’t a great approximation (mayben = 10
did not yield a representative sample)



Answering estimation question

e Great...but what do we do with the bootstrap distribution?

e Recall our research question: What proportion of STAT 201A pronounced as
Middle-“berry”?

= Could respond using our single point estimate: pé\bs = 0.7

= But due to variability, we recognize that the point estimate will rarely (if ever)
equal population parameter

e Rather than report a single number, why not report a range of values?

= Thisis only possible if we have a sampling distribution to work with!!



Confidence intervals

e Analogy: would you rather go fishing with a single pole or a large net?
= Arange of values gives us a better chance at capturing the true value

e Aconfidence interval provides such a range of plausible values for the parameter
(more rigorous definition coming soon)

= “Interval”: specify a lower bound and an upper bound

= Confidence intervals are not unique! Depending on the method you use, you
might get different intervals



Bootstrap percentile interval

e They x 100% bootstrap percentile interval is obtained by finding the bounds of
the middle y x 100% of the bootstrap distribution

e Called “percentile interval” because the bounds are the (1 — y)/2 x 100 and
(1 + y)/2 x 100 percentiles of the bootstrap distribution

e Ify =0.90, then the bounds would be at which percentiles?

e For our purposes, “bootstrap confidence interval” will be equivalent to
“bootstrap percentile interval”

e quantile() functioninR gives us easy way to obtain percentiles: quantile(x,
p) gives us p-th percentile of x



Visualizing bootstrap confidence interval

Bootstrap dist. of sampling proportions
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e Our 90% bootstrap Cl for p: (0.5, 0.9)



Interpreting a confidence interval

e Our 90% bootstrap Cl for p: (0.5, 0.9). Does this mean there is a 90%
chance/probability that the true proportion lies in the interval?

= Answer: NO
e Remember: bootstrap distribution is based on our original sample

= |f we started with a different original sample x, then our estimated 90%
confidence interval would also be different

e What a confidence interval (Cl) represents: if we take many independent repeated
samples from this population using the same method and calculate ay x 100 %
Cl for the parameter in the exact same way, then in theory, y x 100 % of these
intervals should capture/contain the parameter

=y represents the long-run proportion of Cls that theoretically contain the true
parameter

= However, in real life we never know if any particular interval(s) actually do!



Interpreting a confidence interval (cont.)

e Correctinterpretation (generic) of our interval (a, b): We are y x 100 % confident
that the population parameter is between a and b.

= Interpret our bootstrap Cl in context

e Again: why is this interpretation incorrect? “There is a 90% chance/probability
that the true parameter value lies in the interval.”

= True proportion from censusis p = 0.593



Remarks

e Whatis avirtue of a “good” confidence interval?

e How do you expect the interval to change as the original sample size n
changes?

How do you expect the interval to change as level of confidence y changes?

e Once again, a good interval relies on a representative original sample!



Comparing confidence intervals
Comparing changes in 90% bootstrap Cl for sample sizesn = 5,10, and 20.

N =10 n interval
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Live code + Coding practice!

e Live code:
= in-line code
= setting a seed

e You will investigate what happens as we move y between O to 1!



In-line code

In-line code allows us to be reproducible! Suppose | do all this analysis:

x <— c("berry", "burry", "berry", "berry", "berry", "bury", "berry", "burry", "berry", "berry")
n <— length(x)

p_obs <- sum(x == "berry") / n

p_obs

[1] 0.7

| might want to report this value! Rather than “hard-code” the value 0.7 in the white
text of my . gmd, | want the . gmd to update the value dynamically upon rendering!

.qmd file Rendered PDF
6+ " {r} z
7 x <- c("berry", "burry", "berry", "berry", "berry", x <= c("berry", "burry", "berry", "berry", "berry",
8 "bury", "berry", "burry", "berry", "berry") "bury", "berry", "burry", "berry", "berry")
9 n <- length(x) n <- length(x)

10 p_obs <- sum(x == "berry") / x p_obs <- sum(x == "berry") / n

11« °°°

12

13 The observed sample proportion is “r p_obs’. The observed sample proportion is 0.7.

e Notice the syntax of inline code! Backticks, r, and the spacing matter!



Setting a seed

When we do random sampling, how can we reproduce our results? By setting a
seed!

e “Random” sampling is achieved via a “random number generating function”,
which takes in a number as input. Kind of like initializing the randomness.

e set.seed(<integer>) before doing random sampling will initialize the
generator at that specific integer input, so subsequent calls to random number
generating functions will produce the exact same sequence of “random” numbers



