Introduction to Simple Linear
Regression
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Housekeeping

e Homework 8 due tonight!

e Project proposal feedback (revisions due tonight midnight)



Linear regression

Crash course; take STAT 211 for more depth!



Fitting a line to data

e Recall equationofaline:y=mx+b
= |ntercept b and slope m determine specific line
= This function is deterministic: as long as we know x, we know value of y exactly

e Simple linear regression: statistical method where the relationship between
variables x and y is modeled as a line + error:

V=B Ay ¢ <

_ error
line



Simple linear regression model

Y=L +pPix+e€

e We have two variables:
1. y isresponse variable. Must be (continuous) numerical.
2. x is explanatory variable, also called the predictor variable
= Can be numerical or categorical
e (50 and 1 are the model parameters (intercept and slope)
= Estimated using the data, with point estimates by and b,
e ¢ (epsilon) represents the error
= Accounts for variability: we do not expect all data to fall perfectly on the line!

= Sometimes we drop the € term for convenience



Linear relationship

Suppose we have the following data:
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e Observations won’t fall exactly on a line, but do fall around a straight line, so
maybe a linear relationship makes sense!



Fitted values

Suppose we have some specific estimates by and b;. We could approximate the
linear relationship using these values as:

yA= by + by x

e The hat on y signifies an estimate: y'is the estimated/fitted value of y given these
specific values of x, by and b;

= Can obtain a estimate yfor every observed response y

e Note that the fitted value is obtained without the error



Fitted values (cont.)
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e Suppose our estimated line is the yellow one: y'=1.11 + 0.41x

e The fitted value y; for y; lies on the line; the above plot shows three specific
examples



Residual

Residuals (denoted as e) are the remaining variation in the data after fitting a
model.

observed response = fit + residual

e For each observation i, we obtain the residual e; via:

yi=y+te=e =y -y
e Residual = difference between observed and expected
e |Inthe plot, the residual is indicated by the vertical dashed line

= Whatis the ideal value for a residual? What does a positive/negative
residual indicate?



Residual (cont.)
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Residual values for the three highlighted observations:

X y y_hat residual

-2.991 2.481 -0.130 2.611

-1.005 -1.302 0.691 -1.994

3.990 3.929 2.757 1.172



Residual plot

e Residuals are very helpful in evaluating how well a model fits a set of data

e Residual plot: original x values plotted against corresponding residuals on y-axis

Residual plot
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Blue dots = residuals for specific points from previous plot



Residual plot (cont.)

Residual plots can be useful for identifying characteristics/patterns that remain in
the data even after fitting a model.

e Just because you fit a model to data, does not mean the model is a good fit!

Residual plot Data + fitted line

Can you identify any patterns remaining in the residuals?



Describing linear relationships

Different data may exhibit different strength of linear relationships:
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e Can we quantify the strength of the linear relationship?



Correlation

e Correlation is describes the strength of a linear relationship between two
variables

= The observed sample correlation is denoted by R

= Formula (notimportant):R = —- 3 | (xis"_c > (y;‘f )
B - 5

o Always takes a value between -1 and 1

» -1=perfectly linear and negative R TR |

m 1 =perfectly linear and positive

= 0=no linear relationship R=0.33 R=-0.92 R =-0.23

e Nonlinear trends, even when strong,
sometimes produce correlations that
do not reflect the strength of the
relationship



Least squares regression

In Algebra class, there exists a single (intercept, slope) pair because the (x, y) points
had no error; all points landed on the line.

e Now, we assume there is error

e How do we choose a single “best” (by, by) pair?



Different lines

The following display the same set of 50 observations.

Option 1 Option 2 Option 3

Which line would you
say fits the data the
best?

-50-25 0.0 25 5.0 -50-25 00 25 5.0 -5.0 -25 0.0 25 5.0
X X X
e There are infinitely many choices of (bg, b ) that could be used to create a line
e We want the BEST choice (i.e. the one that gives us the “line of best fit”)

= How to define “best”?



Line of best fit

One way to define a “best” is to choose the specific values of (by, by ) that minimize
the total residuals across all n data points. Results in following possible criterion:

1. Least absolute criterion: minimize sum of residual magnitudes:
ley [+ lex| + ... + |en|
2. Least squares criterion: minimize sum of squared residuals:
ef +e5+ ... +en

e The choice of (by, by) that satisfy least squares criterion yields the least squares
line, and will be our criterion for “best”

e On previous slide, yellow line is the least squares line, whereas pink line is the
least absolute line



Linear regression model

Remember, our linear regression model is:

y=0p0+pP1Xx+¢€

While not wrong, it can be good practice to be specific about an observation i:
Yi = fo+ Pixi +¢€i, i=1,...,n

e Here, we are stating that each observation i has a specific:
= explanatory variable value x;
= response variable value y;
= error/randomness €;

e In SLR, we further assume that the errors €; are independent and Normally
distributed



Conditions for the least squares line (LINE)

Like when using CLT, we should check some conditions before saying a linear
regression model is appropriate!

Assume for now that x is continuous numerical.

1. Linearity: data should show a linear trend between x and y

2. Independence: the observations i are independent of each other
e e.g.random sample
e Non-example: time-series data

3. Normality/nearly normal residuals: the residuals should appear approximately
Normal

e Possible violations: outliers, influential points (more on this later)

4, Equal variability: variability of points around the least squares line remains
roughly constant



Running example

We will see how to check for these four LINE conditions using the cherry data from
openintro.

diam volume e Explanatory variable x: diam
8.3 10.3 e Response variable y: volume
8.6 10.3
8.8 10.2

10.5 16.4

10.7 18.8

Our candidate linear regression model is as follows

volume = fy + Bidiameter + €



1. Linearity

Assess before fitting the linear regression model by making a scatterplot of x vs. y:

Cherry tree diameter vs. volume
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Does there appear to be a linear relationship between diameter and volume?

e | would say yes



2. Independence

Assess before fitting the linear regression model by understanding how your data
were sampled.

e The cherry data do not explicitly say that the trees were randomly sampled, but
it might be a reasonable assumption

An example where independence is violated:

Time series data Here, the data are a time series, where
03 RO observation at time point i depends on
e et BRI 2 . the observation at time i — 1.
« % ° . . . o '. ® e
os 0w O e \.'.- “% e Successive/consecutive observations

are highly correlated
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Fitting the model

Because the first two conditions are met, we can go ahead and fit the linear
regression model (i.e. estimate the values of the coefficients)

o Afterfitting the model, we get the following estimates: by = —=36.94 and
by = 5.07. So our fitted model is:

A

volume = —-36.94 + 5.07 x diameter

Remember: the “hat” denotes an estimated/fitted value!

e We will soon see how by and b, are calculated and how to interpret them

e The next two checks can only occur after fitting the model.



3. Nearly normal residuals

Assess after fitting the model by making histogram of residuals and checking for
approximate Normality.

e Remember, residuals aree; = y; — y;

cherry |>

nutate(volume hat = —36.94 + 5.07+diam) Histogram of residuals for cherry model

mutate(residual = volume - volume_hat) 5
diam volume volume_hat residual _ ’
8.3 10.3 5.141 -5.159 % z
8.6 10.3 6.662 -3.638
8.8 10.2 7.676 -2.524 1
10.5 16.4 16.295  -0.105 ° 5 0 5
107 188 17.309  -1.491 residuals

Do the residuals appear approximately Normal?

e | think so!



4. Equal variance

Assess after fitting the model by examining a residual plot and looking for patterns.

A good residual plot: A bad residual plot:

Constant variance Not constant variance
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We usually add a horizontal line at 0.



4. Equal variance (cont.)

Let’s examine the residual plot of our fitted model for the cherry data:

Residual plot for cherry model
10

Residual
(@)
d
[, )
0
[ ]

8 12 16 20
diameter (inches)

e Do we think equal variance is met?

= | would say there is a definite pattern in the residuals, so equal variance
condition is not met.

= Some of the variability in the errors appear related to diameter



